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1. Introduction

The anti-de Sitter/conformal field theory correspondence (AdS/CFT) [1] is a powerful tool

that has shed light on many interesting aspects of physics (see e.g. [2]), and especially

that of black holes. In particular, it has elucidated calculations of black hole entropy in

string theory (e.g. [3]), and has provided strong motivation for the idea that black hole

evaporation should be a unitary process.1

However, fundamental questions concerning the degrees of freedom associated with

black holes remain unanswered. For example, we still lack a bulk calculation of black hole

entropy in terms of microstates. Another issue of interest in the context of AdS/CFT

is just what CFT should be used to describe the most general black hole geometries.

Classical gravity can describe black holes with a variety of complicated interiors such as

those containing inflating universes or a second asymptotic region. One notes that such

examples seem to require additional degrees of freedom beyond the CFT (which we shall

call CFT0) used to describe AdS space itself [5 – 8, 10, 9]. Unfortunately, we remain far

from a general understanding of the CFT’s in which states dual to such geometries might

live.

Here we describe another such scenario. We argue below that, in a certain context,

the dual description of an extreme black hole may require additional degrees of freedom

beyond those of CFT0. Although it lacks a second asymptotic region, the extreme black

hole has an internal infinity lying at the end of its infinite throat [11]. As we discuss briefly

below, such an internal infinity can also be considered as part of the boundary of the bulk

spacetime, and can provide a home for these additional degrees of freedom. The internal

infinity is marked D̂L on the conformal diagram shown in figure 1.

1See, however [4] for a contrasting view.
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Now, the reader may be concerned by the fact that

D
`

L

Figure 1: A conformal diagram of

the extreme BTZ black hole, with

lines of constant BTZ coordinate t

(see equation 2.1) drawn for later

reference. Each point on the dia-

gram represents an S1 in the space-

time which is the orbit of a space-

like Killing field. The diagonal lines

are the horizon, the heavy line at

right is the conformal boundary at

r = ∞, the dashed line is the sin-

gularity, and the point D̂L marks

the internal infinity which forms the

‘end’ of the infinite throat.

extreme black holes are often described within CFT0 [1,

2], without the addition of any new degrees of freedom.

To avoid confusion, let us point out that one may con-

sider two distinct classes of spacetimes containing ex-

treme black holes: those with an infinite throat (which

we address in this paper) and those without. The usual

eternal extreme black hole (figure 1) is clearly an exam-

ple of the first class, as is any spacetime generated from

it by sending in small perturbations from its asymptotic

boundary.

The other class of spacetimes arises when extreme

black holes form dynamically. Of course, this cannot

happen by any classical process. Consider, however, a

nearly extreme black hole with one asymptotic region

(perhaps formed from the collapse of matter). As a

result of a thermal fluctuation, such a black hole may

decay to extremality, emitting some Hawking radiation

in the process. In the semiclassical description, the de-

cay occurs because of a negative flux of energy across

the future horizon. Thus one may expect that, before some advanced time v, the spacetime

is that of a non-extreme black hole. Thus, it has no infinite throat.

A similar dichotomy arises when one compares non-extreme black holes with differing

numbers of asymptotic regions (i.e., one vs. two). In that case, one expects the number

of such regions to be reflected by differing dual CFTs [5 – 8]. It is natural to expect that

our two classes of spacetimes, with and without extreme black hole internal infinities,

should correspond to two distinct CFTs as well. The class without an infinite throat (but

with one asymptotic region) should be described by CFT0, while, due to the additional

boundary conditions needed at the internal infinity, the class with an infinite throat should

be described by a larger CFT.

It is of course possible that the infinite throat is simply a red herring (e.g., as suggested

in [13 – 15] and references therein). However, pushing this model forward may provide

insight into the broader issues of black holes and dual degrees of freedom. We are also

interested in the relation to entanglement entropy2 in the context of AdS/CFT [8, 32, 33].

We therefore investigate features associated with the throat of the extreme BTZ black hole

below.

Our approach will be to use a simple linear toy model of AdS3/CFT2, which was

considered implicitly in [34] and then more explicitly in [35]. The model replaces the CFT2

of [1] by a single real-valued free scalar field on the cylinder. Empty AdS3 is of course

2Bulk discussions of entanglement entropy have been of interest for some time [12, 16, 17, 21, 18, 20, 24,

23, 22, 19, 25 – 27], though several issues remain unclear. These include the species problem (see e.g. [28]),

the correct value of the cut-off used in entanglement entropy calculations (see [29, 30]), and other related

issues (see, e.g., [31]).
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taken to be dual to the vacuum of this CFT. As we remind the reader in section 2, the

BTZ black hole [36, 37] can be constructed as a quotient AdS3/Γ of AdS3, where Γ is an

appropriately acting discrete group. The boundary of the BTZ black hole is an analogous

quotient of the boundary ∂AdS3 of AdS3. Since the model CFT is linear, there is a natural

map which takes the CFT state on the (boundary) spacetime S1 × R and constructs an

associated CFT state on the quotient boundary S1 × R/Γ.

In the non-extreme case, the appropriate quotient construction leads to a black hole

with two asymptotic regions, and thus with two asymptotic boundaries, each of which is

identical to the boundary of pure AdS3. Here we will reexamine this construction in detail,

focussing on the extreme limit. One asymptotic boundary, which we take to be the right

boundary, remains intact and is again identical to the boundary of pure AdS3. Thus, it is

natural for a copy of the original CFT to be associated with this boundary. We refer to this

copy as CFTR. Although the second asymptotic region disappears in this limit, we will

nevertheless find that the state dual to an extreme black hole lives in a product conformal

field theory, CFTL⊗CFTR, where CFTL is associated with the ‘end’ of the infinite throat

of the extreme black hole. This internal infinity is a remnant of the second asymptotic

boundary of the non-extreme black hole which, as we shall see below, has degenerated to

a null circle. As a result, CFTL has only right-moving degrees of freedom.

The plan of this paper is as follows: section 2 provides a brief review of the BTZ black

hole and sets notation for the rest of this paper. In section 3 we adopt the method of [35]

to obtain the dual description of the BTZ black hole for all masses and angular momenta.

In particular, section 3.2 elaborates on the extreme BTZ black hole. Finally, we discuss

the implications of our results for AdS/CFT in section 4.

2. Review: the BTZ black hole

Recall [36, 37] that the BTZ black hole is a solution to 2+1 dimensional gravity with

negative cosmological constant. Outside the horizon, the line element of this solution is

given by

ds2 = −(r2 − r2
+)(r2 − r2

−)

r2`2
dt2 +

r2`2

(r2 − r2
+)(r2 − r2

−)
dr2 + r2

(
dφ +

r+r−
r2`

dt
)2

, (2.1)

from which one notes the presence of Killing horizons at r+, r−. In the same notation, the

mass of the black hole is

M =
r2
+ + r2

−
8`2G(3)

, (2.2)

and the angular momentum is

J =
r+r−
4`G(3)

, (2.3)

where G(3) is the three-dimensional gravitational constant. Here r+ ≥ r− ≥ 0 and ` is the

AdS length scale in the sense of equation (2.4) below.
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Since gravity has no local degrees of freedom in 2+1 dimensions, the BTZ solution

is locally just AdS3. In fact, the BTZ solution may be thought of as the quotient of a

certain region in AdS3 by an appropriate discrete group of isometries. Section 2.1 reviews

the bulk aspects of this quotient construction. In section 2.2 we review the quotient of

the conformal boundary ∂AdS3 of AdS3 which will give ∂BTZ, the boundary of our BTZ

black hole. In both subsections our main focus is a proper description of the extreme limit

r+ → r−.

2.1 BTZ as a quotient

We are interested in the description of the BTZ black hole (2.1) as a quotient of AdS3 [37].

We remind the reader that AdS3 is the universal covering space of the surface ÂdS3 defined

by the relation

−`2 = −(T 1)2 − (T 2)2 + (X1)2 + (X2)2 (2.4)

in R
2,2 with line element:

ds2 = −(dT 1)2 − (dT 2)2 + (dX1)2 + (dX2)2. (2.5)

We will use the coordinates (ρ, t, θ) adopted in [38],

T 1 = `
1 + ρ2

1 − ρ2
sin t, T 2 = `

1 + ρ2

1 − ρ2
cos t (2.6)

X1 = `
2ρ

1 − ρ2
cos θ, X2 = `

2ρ

1 − ρ2
sin θ (2.7)

with 0 < ρ < 1 and −π < θ ≤ π. For ÂdS3 we have −π ≤ t < π, but we are interested in

the universal cover, AdS3, which has −∞ < t < ∞. In such coordinates, the line element

becomes

ds2 =
4`2

1 − ρ2

(
−1

4
(1 + ρ2)2dt2 + dρ2 + ρ2dθ2

)
. (2.8)

After the conformal rescaling

ds̃2 =

(
1 − ρ2

4`2

)
ds2, (2.9)

the boundary (ρ → 1) line element is just that of the standard cylinder

ds̃2
∂AdS3

= −dt2 + dθ2. (2.10)

The six generators of the SO(2, 2) isometries of AdS3 are given by

Jab = xb
∂

∂xa
− xa

∂

∂xb
(2.11)

with xa ∈ (T 1, T 2,X1,X2). Consider the Killing vector

ξ =
r+

`
JT 2,X1 − r−

`
JT 1,X2 + JX1,X2 − JT 2,X2 (2.12)

with r+ ≥ r− ≥ 0. The BTZ black hole is obtained by identifying points P in AdS3 along
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the orbits of ξ at intervals of Killing parameter 2πn, with n ∈ Z:

P ∼ e2πξnP. (2.13)

By applying this quotient procedure to the region ξ2 > 0 we obtain a global description

of the BTZ black hole. The coordinate transformation relating the coordinates of (2.1)

to (2.8) on the quotient space can be found in [37, 34]. The geometry of the resulting

quotient depends only on the conjugacy class of ξ within SO(2,2). If r+ 6= r−, one may

choose a representative ξ′ of the conjugacy class of (2.12) such that

ξ′ =
r+

`
JT 2,X1 − r−

`
JT 1,X2 . (2.14)

An explicit coordinate transformation which takes (2.12) into (2.14) for r+ 6= r− can be

found in [37]. The simpler form (2.14) has the property that ξ → −ξ under an inversion of

the space directions: (X1,X2) → (−X1,−X2). As a result, a quotient construction based

on (2.14) is manifestly symmetric under this inversion. However, the representation (2.14) is

not possible for the extreme black holes (r+ = r−) on which we wish to focus. As a result, we

use (2.12) instead of the simpler (2.14). In doing so, we note that our parametrization (2.12)

explicitly breaks the (X1,X2) → (−X1,−X2) symmetry.

The identifications (2.13) act on the region ξ2 > 0 in AdS3. Other regions are not

considered as they would lead to closed causal curves or to singularities in the quotient

space: points in the bulk of AdS with ξ2 = 0 project onto what is termed the singularity

of the black hole in [36, 37].

Although AdS3 is maximally symmetric, the BTZ black hole has only two isometries.

To identify them, we note that these descend from the two Killing fields of AdS3 which

commute with ξ. One is ξ itself (2.12), which by construction projects to a spacelike Killing

field on the quotient. The second, η, may be taken to be proportional to the lift of the

time translation symmetry of the BTZ black hole. Let us denote the projection of these

Killing fields to the BTZ black hole by ξ̂ and η̂. Comparing with (2.1), we find that ξ̂ = ∂
∂φ

and η̂ = ` ∂
∂t

on the BTZ spacetime, while on AdS3 we find:

η = −JT 1,T 2 + JT 1,X1 − r−
`

JT 2,X1 +
r+

`
JT 1,X2. (2.15)

2.2 The quotient of the boundary

As noted in section 1, we will be especially interested in the action of the quotient (2.13)

on the boundary ∂AdS3 of AdS3. We now study this action in detail.

It is convenient to introduce null coordinates u = t + θ, and v = t − θ. In terms of

these coordinates, the Killing fields take the form

ξ =2
√

1 + Σ2 cos
(u

2

)
cos

(u

2
− arctan Σ

)
∂u (2.16)

−2
√

1 + ∆2 cos
(v

2

)
cos

(v

2
+ arctan ∆

)
∂v, (2.17)

η =2
√

1 + Σ2 cos
(u

2

)
cos

(u

2
− arctan Σ

)
∂u (2.18)

+2
√

1 + ∆2 cos
(v

2

)
cos

(v

2
+ arctan ∆

)
∂v, (2.19)

on ∂AdS3, where we have defined Σ = r++r
−

`
and ∆ = r+−r

−

`
.
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We wish to identify the region in ∂AdS3 where ξ2 ≥ 0, as only this region will project

to the boundary of the BTZ black hole. From (2.16) we have

ξ2 = 4
√

(1 + ∆2)(1 + Σ2) cos
(u

2

)
cos

(v

2

)
cos

(u

2
− arctan Σ

)
cos

(v

2
+ arctan ∆

)
.

(2.20)

It is convenient to write the region with ξ2 > 0 as DR ∪ DL, where

DR = {−π + 2arctan Σ < u < π, −π < v < π − 2 arctan ∆} (2.21)

DL = {π < u < π + 2arctan Σ, π − 2 arctan ∆ < v < π}, (2.22)

together with the images of DR ∪ DL under the translations u → u + 2πn and v →
v+2πn. For r+ 6= r−, the quotients D̂R of DR and D̂L of DL form the respective conformal

boundaries of the left and right asymptotic regions of the BTZ black hole.

It is interesting to note that DL and DR
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Figure 2: A contour plot of ξ2 on the bound-

ary of AdS3, which under the identification

P ∼ e2πnξP becomes the boundary of the

BTZ black hole. Regions with ξ2 > 0 are

shaded, with darker shading for higher values

of ξ2. Negative values of ξ2 are shaded white.

The thick line marks where ξ2 = 0. As the

black hole becomes extremal, one boundary

collapses to a null line.

do not appear symmetrically in (2.21). In-

deed, DR is a diamond of coordinate dimen-

sions (π−2 arctan Σ)× (π−2 arctan ∆), while

DL is a diamond of coordinate dimensions

(2 arctan Σ) × (2 arctan ∆). For r+ 6= r−, this

is a result of our choice of (2.12) over (2.14)

and the explicit breaking of the symmetry

(X1,X2) → (−X1,−X2). On the other hand,

the lack of symmetry is no surprise for extreme

black holes (for which r+ = r− so that ∆ = 0),

as such black holes have only one asymptotic

region.

A plot of the regions DR and DL (in (t, θ)

coordinates) is given in figure 2. One clearly

sees that, as the black hole approaches ex-

tremality, the left diamond DL collapses to a

null line. Despite the fact that ξ2 = 0 on this

null line, it is convenient to still refer to it as

DL. Under the quotient (2.13) DL maps to a

null circle D̂L. For M = 0, DL degenerates to

a point, which is in fact a fixed point of (2.13).

For extreme black holes with M 6= 0, we

will find in section 3 below that interesting

degrees of freedom live on the null circle D̂L.

As a result, we would like to think of it as

part of the boundary of the black hole. In

the conformal compactification of AdS3, the

null line DL forms part of the boundary of

the region with ξ2 > 0. Curves approaching DL project to curves which travel down the

– 6 –
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infinite throat of the extreme BTZ black hole. Thus, we may think of this null circle as

lying at the end of the throat.

Now, it is clear that DL will not form part of the smooth conformal boundary of the

BTZ black hole. However, (see figure 1) there are both spacelike and causal curves (e.g.,

the generators of the extreme BTZ horizon) which reach DL from within the ξ2 > 0 region.

As a result, one should be able to use causal boundary techniques (e.g, [39], which builds

on [40, 42, 44, 43, 47, 41, 45, 46, 48]) to give a rigorous sense in which this null circle forms

part of the BTZ boundary and to establish in detail its relation to the infinite throat.

3. The dual of the BTZ black hole

As stated in the introduction, our model of AdS/CFT is obtained by replacing the CFT

with a theory of a single minimally-coupled massless free scalar field φ on S1 × R. This

model theory is of course conformal, and has central charge c = 1. The advantage of

this model is its linearity, so that the geometric quotient construction of section 2 has a

natural analogue in the CFT itself. For simplicity, we also replace the ten dimensional bulk

spacetime AdS3 ×S3 ×T 4 with AdS3. Here we follow [35] and, implicitly, [34] which noted

that this simple model is able to reproduce a number of features of the full correspondence

such as the energy, angular momentum, and entropy, as well as the more general thermal

nature of the BTZ black hole.

In section 2, the BTZ black hole was described as the quotient of AdS3 by a certain

discrete group Γ, whose action on AdS3 depends on the mass M and the angular momentum

J of the black hole. Similarly, we found that the boundary ∂BTZ of the BTZ black hole

could be described as the quotient of DL ∪DR ⊂ ∂AdS3 by the action of Γ. Now, since the

dual CFT is associated with the boundary manifold, Γ has a natural action on the CFT as

well. If operators on ∂BTZ are identified with Γ-invariant operators on ∂AdS3, the CFT

state |0〉 (dual to empty AdS3) induces a state |M,J〉 dual to the BTZ black hole. The

state |M,J〉 is the part of |0〉 which contains information about those field modes which

are periodic under the identifications (2.13); information about the other field modes is

discarded.3 We will interpret |M,J〉 as the CFT state dual to the corresponding BTZ

black hole.

After addressing the general case in section 3.1, we highlight certain features of the

extreme case in section 3.2.

3.1 The general case

As in [35], we shall begin by describing |0〉 in terms of the lift of modes which are positive

frequency on ∂BTZ. To do so, we seek solutions of the massless free wave equation on

∂AdS3 which, when restricted to DL and DR, are positive frequency with respect to the

BTZ time translation symmetry η. To proceed we introduce null coordinates α and β on

3More precisely, we use the fact that |0〉 is a gaussian state and we define |M, J〉 to be the gaussian state

on the boundary of the BTZ spacetime whose covariance (equivalently, the two-point function of φ in this

state) is just the restriction of the covariance of |0〉 to those field modes on DL ∪ DR which are the lift of

field modes on the quotient.

– 7 –
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the BTZ boundary and its covering space DR ∪ DL, where we require α and β to satisfy
∂

∂α
= η + ξ , and ∂

∂β
= η − ξ. This determines α and β up to constants α0 and β0 in each

diamond:

α =

ln

((√
1 + Σ2

)
cos(u

2
−arctan(Σ))
cos(u

2 )

)

Σ
+ α0, Σ 6= 0. (3.1)

α = tan
(u

2

)
+ α0, Σ = 0. (3.2)

β = −
ln

((√
1 + ∆2

)
cos( v

2
+arctan(∆))
cos( v

2 )

)

∆
+ β0, ∆ 6= 0. (3.3)

β = tan
(v

2

)
+ β0, ∆ = 0. (3.4)

We would like our coordinates to be real-valued. In DR, the sign of cos(u) is equal to

the sign of cos
(

u
2 − arctan Σ

)
, so the argument of the logarithm in (3.1) is positive and we

may take α0 = 0. In contrast, in DL, the argument of the logarithm is negative and we

may take α0 = −i π
Σ , where we have chosen the branch cut of the logarithm in (3.1) to be

in the upper half u-plane. Similarly, for β0, we may take β0 = 0 in DR and β0 = −i π
Σ in

DL.

One may use uR
ω,+ = 1√

4πω
e−iωα as a basis for right-moving solutions of the wave

equation in DR which are positive frequency with respect to η, and similarly take uL
ω,+ =

1√
4πω

eiωα as a basis for right-moving solutions of the wave equation in DL which are positive

frequency with respect to η. Note that η is future timelike in DR and past timelike in DL,

while ξ points to the right in DR and to the left in DL. In this notation it is easy to see that

uL
ω,+ differs from the analytic continuation of uR

ω,+ to DL by a factor of e−
πω

Σ . A similar

statement is true for the left-moving modes uL,R
ω,−

Following [49], we may use this observation to express |0〉 in terms of the state |0〉η
which is the zero-particle state as defined by the modes uR,L

± . To do so, note that for ω > 0

the modes

W
(1)
ω,+ =

e
πω

2Σ uR
ω,+ + e−

πω

2Σ uL
ω,+√

2 sinh
(

πω
Σ

) , W
(2)
ω,+ =

e
πω

2Σ uL
ω,+ + e−

πω

2Σ uR
ω,+√

2 sinh
(

πω
Σ

) , (3.5)

W
(1)
ω,− =

e
πω

2∆ uR
ω,− + e−

πω

2∆ uL
ω,−√

2 sinh
(

πω
∆

) , W
(2)
ω,− =

e
πω

2∆ uL
ω,− + e−

πω

2∆ uR
ω,−√

2 sinh
(

πω
∆

) , (3.6)

are analytic in the lower half imaginary t-plane on the complexified boundary of AdS and

that they are normalized to have Klein-Gordon norm ±1. Thus, (3.5) and (3.6) are all

positive frequency with respect to t on ∂AdS3. Note that these equations remain valid in

the limit ∆ → 0 and Σ → 0.

We now introduce creation operators a
(1)†
ω,±, a

(2)†
ω,± for the W -modes, along with the

corresponding annihilation operators a
(1)
ω,±, a

(2)
ω,±. We also introduce creation operators

b
(1)†
ω,±, b

(2)†
ω,± and annihilation operators b

(1)
ω,±, b

(2)
ω,± associated with the u-modes, which are

– 8 –
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positive frequency with respect to η. The relations between these operators may be read

directly from (3.5) and (3.6):

a
(1)
ω,+ =

e
πω

2Σ bR
ω,+ − e−

πω

2Σ bL †
ω,+√

2 sinh
(

πω
Σ

) , a
(2)
ω,+ =

e
πω

2Σ bL
ω,+ − e−

πω

2Σ bR †
ω,+√

2 sinh
(

πω
Σ

) , (3.7)

a
(1)
ω,− =

e
πω

2∆ bR
ω,− − e−

πω

2∆ bL †
ω,−√

2 sinh
(

πω
∆

) , a
(2)
ω,− =

e
πω

2∆ uL
ω,− − e−

πω

2∆ bR †
ω,−√

2 sinh
(

πω
∆

) . (3.8)

Recall that |0〉 is the vacuum on ∂AdS3. This means that |0〉 is the minimum energy

state with respect to the time translation ∂
∂t

on ∂AdS3. As such, it is annihilated by a
(1)
ω,±,

a
(2)
ω,±. We will also be interested in the state |0〉η on ∂AdS3 which is annihilated by b

(1)
ω,±,

b
(2)
ω,±. The state |0〉η induces a state |M,J〉η on ∂BTZ via the identification (2.13). Because

|M,J〉η is annihilated by b
(1)
ω,±, b

(2)
ω,± we may identify it as the vacuum state on ∂BTZ.

If we express |0〉 as a set of excitations over |0〉η on ∂AdS3, then the expression for

|M,J〉 as a set of excitations over |M,J〉η will follow immediately. Of course, the expression

for |0〉 as a set of excitations over |0〉η is just the usual Bogoliubov transformation (see

e.g. [50 – 53]):

|0〉 = e−i(K++K
−

)|0〉η (3.9)

with

Kε = i

∫ ∞

0
rω,ε(b

R
ω,ε

†
bL
ω,ε

† − bR
ω,εb

L
ω,ε)dω, and ε = + or −, (3.10)

where tanh(rω,+) = e−
πω

Σ and tanh(rω,−) = e−
πω

∆ .

It is natural to write

|0〉η = (|0〉R+ ⊗ |0〉L+) ⊗ (|0〉R− ⊗ |0〉L−) , (3.11)

making use of the decomposition into right- and left-moving modes (+ or −) supported

separately on DR or DL. We may then rewrite (3.9) as

|0〉b =
(
e−iK+ |0〉R,+|0〉L,+

) (
e−iK

− |0〉R,−|0〉L,−
)
. (3.12)

We see that the right and left movers are entangled with their partners on the opposite

boundary component, but that right-moving and left-moving particles on the same bound-

ary are not entangled with each other. Thus, tracing over, say, all left-moving modes would

yield a pure state.

After the identification (2.13), one finds

|M,J〉 = e−i(K̃++K̃
−

)|M,J〉η , (3.13)

where K̃± is defined as in (3.10) but with the integral over ω replaced by a sum over the

discrete frequencies ωn = 2πn. We may further write |M,J〉η = |0〉L|0〉R such that each of

the states |0〉L and |0〉R is the vacuum of a scalar field on R×S1 (i.e., each is a copy of |0〉
on ∂AdS3). The states |0〉R and |0〉L are associated respectively with D̂L and D̂R.
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An examination of (3.13) shows that both the right- and left- movers are in thermal

states, though with different effective temperatures. The right movers (ε = +) have an

effective inverse temperature β+ = 2π
Σ , while the left movers have an effective inverse tem-

perature β− = 2π
∆ . This may also be expressed in terms of the physical inverse temperature

β and a chemical potential Ω for angular momentum. Such parameters (β,Ω) are related

to β± through β± = β ±Ωβ. Thus, we have Ω = − r
−

r+
and β = 2π`r+

r2
+−r2

−

. The quantum state

of the zero-modes may be treated similarly [35], and again takes the form of a thermo-field

double [54] with temperature β = 2π`r+

r2
+−r2

−

.

Finally, consider the “high temperature limit” where either T+ = 1/β+ À 1 or T− =

1/β− À 1. As in [34, 35], one readily shows that the quantum state |M,J〉 reproduces the

mass, angular momentum, and entropy of the BTZ black hole in this limit so long as one

takes into account the central charge c = 6Q1Q5 = 3`/2G(3) of the CFT2 of [1]. If one

also takes into account the well-known “fractionization” effect of the full CFT2, then this

analysis is valid whenever T+ À 1/c or T− À 1/c; i.e., for all black holes larger than the

Planck scale (r+ À G(3)).

3.2 The extremal limit

Let us now consider the (M 6= 0) extremal limit, r+ → r−. Note that the temperature

approaches zero while the chemical potential approaches −1 , so that the overall effective

temperature of the right movers remains finite (T+ = 1
β+

= 1
(1+Ω)β ), while that of the left

movers vanishes (T− = 1
β
−

= 1
(1−Ω)β ).

Our dual description of the extreme black hole remains a state in the product theory

CFTL⊗CFTR with CFTR,L associated to D̂R,L. Note that CFTR is a copy of the CFT

associated with the boundary of AdS3. On the other hand, CFTL arises from the degenerate

DL, which is a single null line. Thus, CFTL lives on a one-dimensional null circle and has

no left-moving degrees of freedom. As noted above, this null circle lies in some sense at the

bottom of the infinite throat of the extreme black hole. The right-movers of CFTR and

CFTL are entangled in the familiar “thermo-field double” state [54] at temperature β+,

while the left-movers are in their vacuum states.

It is also interesting to consider the BTZ black hole with M = 0, obtained by taking

r+, r− → 0. We find that the effective temperature on both boundaries vanishes and that

the dual state is no longer entangled. Instead, we have |0〉 = |0〉η where again |0〉η =

|0〉L|0〉R. Now, however, |0〉L is the vacuum of the CFT corresponding to the point to

which DL collapsed. Note that despite the fact that DL has degenerated to a point, the

state |0〉 could, in principle, have contained non-tivial information about the zero-mode

on DL.

4. Discussion

In order to investigate the AdS/CFT description of spacetimes with an infinite throat, we

analyzed the dual description of the extreme BTZ black hole in a simple toy model. At

least in the context of our model, we find that the end of the infinite throat plays a role
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analogous to that of a second asymptotic region [55, 34, 8, 9, 33, 10]: the CFT state dual

to an extremal BTZ black hole lives in a product theory of the form CFTR⊗CFTL.

Hence, it appears that the eternal extreme black holes may typify a new class of

spacetimes of interest for AdS/CFT. In addition to the traditional choice of a single

asymptotic region resembling the conformal boundary of AdS3 (and described by a sin-

gle CFT), and also in addition to the case with two such asymptotic regions studied

in [55, 34, 35, 8, 33, 10, 32] (plausibly described by a product of two CFTs), one may

also consider cases with two inequivalent boundary components. Here we take one compo-

nent to be a copy of the boundary of AdS3, while the other is a single null circle which must

sit at the bottom of some infinite throat. The suggestion here is that this third class of

boundary conditions may again be associated with a product CFTL⊗CFTR, where CFTL

contains only, say, right-moving degrees of freedom. In such a setting the extreme black

hole may be described as the particular entangled state discussed in section 3.2.

Further investigation of this idea is certainly needed. For example, since the null circle

is attached to the bulk in a manner entirely different from that of the conformal boundary

in the asymptotic region, it is important to study the possible boundary conditions on this

null circle and their influence on the bulk spacetime.

In addition, it is evident that the relation between boundary degrees of freedom and

those of the bulk will not be as direct as in the case of conformal boundaries. In this more

familiar context, at least in the limit where the bulk fields may be treated semi-classically,

one finds [56 – 63] that local operators in the dual CFT are essentially (rescaled) boundary

limits of local bulk operators. But this seems unlikely to be the case for our internal infinity,

as one may see by studying quantum field theory on the extreme black hole background.

Consider, for example, a calculation of the bulk state of a linear quantum field theory

on the BTZ background via the same quotient methods applied to the boundary in sec-

tion 3. Note that this calculation essentially reduces to calculating the two-point function

G, and that G is related to the two-point function G0 of the vacuum over AdS3 through

a sum over images. Furthermore, because this image sum can be performed on the com-

plexified geometry, analyticity of G0 guarantees that G will satisfy a KMS condition (see

e.g. [64, 65]) with respect to the Killing field which generates the BTZ horizon.4 As a result,

this quantum state will be precisely thermal, and in particular, mixed with respect to ob-

servables localized in one exterior region. The thermal ensemble will again be characterized

by the right- and left-moving inverse temperatures β±.

Taking the extreme limit, the associated state on the extreme BTZ background will

contain thermal excitations of modes with positive angular momentum and, as a result,

will again be a mixed state. Thus, studying limits of bulk operators near the end of the

infinite throat will reveal no correlations of the sort entangling CFTL and CFTR in our

dual CFT state.

4Note that for the BTZ geometry this Killing field is everywhere timelike in the bulk (outside the

horizon), even in the extreme case r+ = r
−

. This behavior is typical of AdS black holes, and avoids

the issues discussed in [66] which prohibit the existence of a Hartle-Hawking state for Kerr black holes in

asymptotically flat spacetimes.
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One might restate this obseveration more physically by noting that the Hartle-Hawking

state of the non-extreme black hole (with two asymptotic regions) is an entangled state with

respect to modes localized in each of its asymptotic regions. These regions are connected

by an Einstein-Rosen bridge. This bridge becomes infinitely long in the extreme limit: one

side of the bridge disappears from the spacetime. Thus, there are no longer any modes with

which to purify the mixed state seen by an observer at the remaining end of the bridge.5

Instead, the complete perturbative bulk state is mixed for extreme black holes and, from

this point of view, boundary limits of bulk fields do not result in the sort of entanglement

described in section 3.2.

A related issue is whether there might be some bulk sense in which the extreme Hartle-

Hawking state can be purified through entanglement. We leave further investigation of the

connection between our CFTL and bulk degrees of freedom for future work.

Finally, although no entanglement is obvious from the bulk perspective, it is interesting

to note that the description of the CFT as a product CFTL⊗CFTR is consistent with

the entanglement interpretation of black hole entropy. Such an interpretation remains

mysterious for black holes whose dual lives in a single CFT but (as emphasized in [33]) it

becomes natural if the dual theory takes a product form as above. In particular, it was

advocated in [33] that the entropy of a two-asymptotic-region black hole may always be

interpreted as entanglement entropy of its CFT dual. Here, we see the same behavior for

black holes with one asymptotic region and an internal infinity. In particular, we note that

|M,J〉 encodes the Bekenstein-Hawking entropy through entanglement.
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[43] I. Rácz, Causal boundary of space-times, Phys. Rev. D 36 (1987) 1673;

Causal boundary for stably causal space-times, Gen. Rel. Grav. 20 (1988) 893.

[44] Z.-Q. Kuang and C.-B. Liang, On the GKP and BS constructions of c boundary, J. Math.

Phys. 29 (1988) 433.

[45] L.B. Szabados, Causal boundary for strongly causal space-time, Class. and Quant. Grav. 5

(1988) 121.

[46] L. Szabados, Causal boundary for strongly causal space-time II, Class. and Quant. Grav. 6

(1989) 77.

– 14 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB709%2C391
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB709%2C391
http://xxx.lanl.gov/abs/hep-th/0401081
http://xxx.lanl.gov/abs/quant-ph/0505092
http://xxx.lanl.gov/abs/gr-qc/9912119
http://xxx.lanl.gov/abs/gr-qc/9701056
http://xxx.lanl.gov/abs/hep-th/0312059
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=IJTPB%2CB44%2C1807
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=IJTPB%2CB44%2C1807
http://xxx.lanl.gov/abs/hep-th/0501103
http://jhep.sissa.it/stdsearch?paper=05%282001%29001
http://xxx.lanl.gov/abs/hep-th/0002145
http://xxx.lanl.gov/abs/hep-th/0508217
http://jhep.sissa.it/stdsearch?paper=12%281998%29005
http://xxx.lanl.gov/abs/hep-th/9804085
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD59%2C066002
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD59%2C066002
http://xxx.lanl.gov/abs/hep-th/9808081
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C69%2C1849
http://xxx.lanl.gov/abs/hep-th/9204099
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD48%2C1506
http://xxx.lanl.gov/abs/gr-qc/9302012
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C15%2C627
http://xxx.lanl.gov/abs/gr-qc/9707036
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C20%2C4085
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C20%2C4085
http://xxx.lanl.gov/abs/gr-qc/0303025
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JMAPA%2C15%2C1302
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JMAPA%2C15%2C1302
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD33%2C1533
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD36%2C1673
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=GRGVA%2C20%2C893
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JMAPA%2C29%2C433
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JMAPA%2C29%2C433
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C5%2C121
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C5%2C121
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C6%2C77
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C6%2C77


J
H
E
P
0
1
(
2
0
0
6
)
1
4
1
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